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Abstract

The Voronoi tessellation technique and the finite element method are utilized to investigate the microstructure-prop-
erty relations of two-dimensional cellular solids having irregular cell shapes and non-uniform cell wall thickness.
Twenty finite element models are constructed for each type of honeycomb samples (specimens) to obtain the mean val-
ues and standard deviations of the effective elastic properties. Spatially periodic boundary conditions are applied to
each specimen containing 360 complete cells. The simulation results indicate that the elastic moduli increase as cell
shapes become more irregular, but decrease as cell wall thickness gets less uniform. The Poisson�s ratios are insignifi-
cantly affected by the presence of these two types of imperfections. The effect of the interaction between the co-existing
cell shape and cell wall thickness imperfections on the elastic moduli is found to be weak. Bending remains as the dom-
inant deformation mechanism in a loaded honeycomb having irregular cell shapes and/or non-uniform cell wall thick-
ness. In addition, it is revealed that such imperfect honeycombs can be regarded as isotropic.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular solids (foams) are prevalent in nature and ubiquitous in engineering applications. Physical
behaviors of such materials depend on the cell topology, the relative density and the properties of the cell
wall material. A successful model that links the observed foam properties to the complex microstructures of
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foams can help us to understand how the microstructures affect the mechanical properties and enable us to
optimize the microstructural parameters for a given application.
Many models, analytical or experimental, have been developed, based on idealized unit cells, to predict

mechanical properties of cellular solids. An idealized unit cell (also called repeating unit) can capture the
essential microstructural features of a typical cell extracted from a real cellular material. The repeating unit
is usually a hexagonal cell when modeling two-dimensional (2-D), honeycomb-like foams. For three-dimen-
sional (3-D) cellular materials, cubic, tetrahedral, dodecahedral and tetrakaidecahedral cells have been used
as repeating units. With the simplified geometry of a unit cell, closed-form structure-property relations can
be derived (e.g., Silva et al., 1995; Gibson and Ashby, 1997; Li et al., 2003a).
Although unit cell-based models can provide important results, they are significantly limited by their ina-

bility to account for microstructural imperfections inherent in most real cellular materials, whose cell struc-
tures are typically non-periodic, non-uniform and disordered. Thus, more complex, statistical models are
necessitated to obtain improved predictions. To this end, suitable numerical methods are often required be-
cause of the stochastic nature of the problem.
Efforts have been made to investigate the effects of imperfections, such as irregular cell shapes, non-uniform

cell wall thickness, wavy cell walls, and missing or fractured cell walls, on mechanical properties of cellular
materials; most of these studies are based on the finite element method (FEM). For example, Silva et al.
(1995) generated non-periodic arrays of 2-D Voronoi cells with uniform cell wall thickness, and found that
the irregularity of cell shapes does not introduce significant variance in the elastic properties of low-density hon-
eycombs. The effect of material distribution in the cell edges of hexagonal honeycombs on the stiffness and
strength of metallic foams was investigated by Simone and Gibson (1998a). Their finite element results indi-
cated that themodulus and peak stress of ametallic honeycomb initially increase and then decrease as themate-
rial shifts away from the cell edges into Plateau borders near the vertices. Simone and Gibson (1998b) also
studied the influence of edge/face curvature and corrugations on the properties of hexagonal honeycombs,
where they showed that wavy distortions substantially reduce the effective modulus and peak stress of a hon-
eycomb. The study of Silva and Gibson (1997) revealed that random cell wall removals sharply lower the effec-
tive mechanical properties of both perfect and imperfect honeycombs. Among the random imperfections
considered inChen et al. (1999), i.e., cell size variations, fractured cell walls, cell wall misalignments andmissing
cells, fractured cell edges were found to cause the biggest reduction in yield strength of 2-D foams. More
recently, Fazekas et al. (2002) studied the effects of cell shape variations on the Young�s modulus and yield
strength of 2-D cellular solids and found that the cell geometry has a large influence on the mechanical prop-
erties of the cellular solids. However, in each of the studies mentioned above only one type of imperfections was
included at a time. In general, two ormore types of imperfections are simultaneously involved in themicrostruc-
ture of a cellular material. Therefore, models incorporating two or more types of imperfections are still in need.
The objective of this paper is to address the combined effects of two co-existing imperfections––irregular

cell shapes and non-uniform cell wall thickness––on the elastic properties of 2-D foams. The rest of this
paper is organized as follows. In Section 2, honeycombs with different degrees of cell shape irregularity
(amplitude a) and cell wall thickness non-uniformity (amplitude b) are first constructed using the Voronoi
tessellation technique. Twenty finite element (FE) models are then developed for each type of honeycombs
having the same pair of a and b by using the constructed Voronoi diagrams to calculate the effective
Young�s moduli, Poisson�s ratios and shear modulus of the honeycombs. Each of these diagrams (speci-
mens) contains 360 complete cells. In Section 3, a mesh sensitivity study is first performed to determine
the appropriate number of cells to be included in each specimen, and the choice of 20 specimens to be used
in the statistical analysis is then justified. This is followed by an investigation into the elastic behavior (iso-
tropic or anisotropic) of the honeycombs based on the Voronoi diagrams and the FE models. Finally, a
parametric study for sample cases involving different values of the cell shape irregularity amplitude, the cell
wall thickness non-uniformity amplitude, and the relative foam density is conducted, with the simulation
results presented and discussed. A summary is given in the fourth and last section.
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2. Analysis

The Voronoi tessellation technique is often used to capture random features of foam microstructures.
When a set of seeds, placed in space simultaneously in a random fashion, grow in all directions with a uni-
form speed, a 2-D or 3-D Voronoi diagram is formed, depending on the space dimension. The Voronoi
tessellation structure is fully determined by the initial locations of the seeds (e.g., Glaessgen et al., 2003).
Using regularly positioned seeds produces regular Voronoi diagrams. The current analysis starts with a ref-
erence model, which is a hexagonal honeycomb structure with perfectly ordered, regular cell shapes and
uniform cell wall thickness. This reference model can be constructed from a set of regularly packed seeds
using the Voronoi tessellation technique, as shown in Fig. 1. Perturbations are then introduced to the ref-
erence model to generate Voronoi diagrams with irregular cell shapes and non-uniform cell wall thickness.
The non-uniformity here and in the sequel means that the thickness of one cell wall may differ from that of
any other cell wall, although each cell wall is regarded as having the same thickness.

2.1. Spatially periodic honeycombs with cell shape and cell wall thickness variations

There are two methods to construct 2-D random foam models using the Voronoi tessellation technique.
The first method starts with building a Voronoi tessellation that is larger than the foam specimen of interest
from a set of randomly placed seeds. Then, a bounding rectangle with dimensions same as those of the spec-
ified foam specimen is imposed to trim off the extraneous layer of the tessellation (e.g., Van der Burg et al.,
1997). This layer contains Voronoi cells that do not resemble (even irregular) cells of a honeycomb. It
should be noted that the model so obtained is not periodic and many cells must be included in the specimen
to minimize the edge effect. In addition, only displacement boundary conditions can be applied in this case.
The second method is to use a set of seeds of periodic symmetry (e.g., Nygards and Gudmundson, 2002).
First, a preset number of seeds are generated within a rectangle. Then, the position of each seed within the
rectangle is copied to eight identical rectangles adjacent to or sitting at the corners of the original rectangle.
Finally, the Voronoi tessellation technique is applied to all of the seeds within the nine rectangles. Part of
the resulting Voronoi tessellation that is inscribed by the center (original) rectangle can be taken out as a
periodic specimen. In this study, the second method is adopted to generate seeds of periodic symmetry, and
the needed Voronoi diagrams are then constructed using the program Qhull developed at the Geometry
Center, the University of Minnesota––Twin Cities (now available at http://www.geom.uiuc.edu/soft-
ware/qhull/).
The irregularity of cell shapes is determined by the irregular distribution of the seeds. The locations of

the seeds used to construct Voronoi diagrams with irregular cell shapes are perturbed from a regular lattice
Fig. 1. Voronoi diagram based on regularly packed seeds.

http://www.geom.uiuc.edu/software/qhull/
http://www.geom.uiuc.edu/software/qhull/
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of seeds. Fig. 2 shows the coordinate perturbations of a regularly packed seed. The perturbed coordinates
of seed i, xi1 and xi2, may be represented by
xi1 ¼ �xi1 þ aðd0 cos hiÞui;

xi2 ¼ �xi2 þ aðd0 sin hiÞui;
ð1Þ
where �xi1, �x
i
2 are the two coordinates of the same seed in the regular lattice, d0 is the distance between two

regularly packed (unperturbed) seeds, hi (2 [0,2p]) is a stochastic angle (with a uniform distribution) be-
tween the x1-axis and the line connecting the unperturbed and perturbed seeds, ui (2 [�1,1]) is a random
variable with a uniform distribution, and a (2 [0, 1]) is the amplitude used to quantify the degrees of cell
shape irregularity. The smaller a is, the more regular the Voronoi diagram is. Regular hexagonal honey-
combs are obtained when a = 0, and completely irregular honeycombs are defined when a = 1.0. Fig. 3
shows honeycomb samples with different degrees of cell shape irregularity. Each sample includes 360 com-
plete cells. It should be pointed out that the expressions given in Eq. (1) for locating the perturbed seed
involve the stochastic angle hi and differ from the ones used in the earlier studies reviewed in Section 1.
For given relative density and amplitude of cell shape irregularity, the predicted properties of a honey-

comb having uniform cell wall thickness depend on the two sets of stochastic variables hi and ui

(i 2 {1, . . .,M}; M = the total number of seeds) (see Eq. (1)), which are produced using two different gen-
erators of uniformly distributed random numbers. To obtain the expectation values of the foam properties,
a significant number of simulations with various sets of hi and ui are therefore needed. In this study, 20
samples are analyzed for each value of a in order to compare with the results presented in Silva et al.
(1995). The choice of 20 specimens (samples) will be discussed further in Section 3.
After the cell shapes are determined, statistical thickness variations can be introduced to the uniform cell

wall thickness t0:
t0 ¼
RL1L2
PN

j¼1lj
; ð2Þ
Fig. 2. Coordinate perturbations of the ith seed (�xi1, �x
i
2).



Fig. 3. Honeycomb samples with varying a: (a) a = 0, (b) a = 0.5, (c) a = 1.0.
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where R is the relative foam density, L1 and L2 are, respectively, the width and height of the foam sample
(specimen), lj is the length of cell wall j, and N is the total number of cell walls. To this end, each cell wall is
assigned a random thickness given by (e.g., Grenestedt and Bassinet, 2000)
tj ¼ ct0ð1þ bwjÞ; ð3Þ
where b (2 [0, 1]) is the amplitude used to quantify the non-uniformity of cell wall thickness, wj (2 [�1,1]) is
a random variable with a uniform distribution, and c, called the normalizing factor, is defined by
c ¼
PN

j¼1lj
PN

j¼1ð1þ bwjÞlj
ð4Þ
to ensure that the relative density (R) remains unchanged with the variation of the cell wall thickness. Given
R, a, b, hi and ui (i 2 {1, . . .,M}), the predicted foam properties depend on the set of random variables wj

(j 2 {1,2, . . .,N}), which are generated independently of hi and ui (i 2 {1,2, . . .,M}). Statistically, it is re-
quired to run sufficient simulations with different sets of wj to obtain the expectation values of the foam
properties. In this study, 20 foam samples (specimens), with a remaining fixed for each sample, will be ana-
lyzed for each given value of b. The reason for choosing 20 specimens will be provided in Section 3.

2.2. Finite element analyses

A finite element study is performed to obtain the elastic properties of honeycombs with cell shape and
cell wall thickness variations using the commercial software package ABAQUS 6.3 (Hibbitt et al., 2002).
Here, graphitic carbon foams are considered, whose modeling partially motivated this study. The Young�s
modulus Es and Poisson�s ratio ms of the solid carbon material are, respectively, taken to be 15.61GPa and
0.33 (Li et al., 2003a,b). Each cell wall is modeled with a three-node beam element (element type B22 in
ABAQUS), which involves bending, stretching and shearing deformation mechanisms. An earlier study
by Silva et al. (1995) showed that using such a beam element to model each cell wall was sufficient for con-
vergence. It is noted that exceptionally short cell walls exist in honeycomb specimens having highly irreg-
ular cell shapes. Typical beam elements cannot well represent these short cell walls (e.g., Silva et al., 1995).
However, since short cell walls only account for a small fraction (a few percent) of the total number of cell
walls, the effect incurred from using inappropriate element types is negligible (Van der Burg et al., 1997;
Chen et al., 1999). Deletion of short cell walls in the finite element model may even reduce the degrees
of freedom of the model, thereby resulting in overestimated stiffness for the honeycomb (Silva et al., 1995).



Fig. 4. Simulated tests for determining the effective properties.
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Uniaxial compressive tests on honeycomb specimens along two orthogonal directions, x1 and x2, are
considered in two separate analyses to obtain the effective Young�s moduli and Poisson�s ratios of the hon-
eycomb relative to the two directions (see Fig. 4). In each analysis, a small compressive strain in the amount
of �0.001 is applied in the loading direction to ensure elastic deformations needed. The effective Young�s
moduli E1 and E2 of the honeycomb are then obtained as
E1 ¼
�F 1
he1L2

; ð5Þ

E2 ¼
�F 2
he2L1

; ð6Þ
where h is the thickness of the honeycomb, e1 and e2, both being �0.001, are the applied compressive
strains, and F1 and F2 are, respectively, the total reaction forces along x1 and x2 directions on the prescribed
boundary. Also, the effective Poisson�s ratios are obtained as
m12 ¼ � u2
e1L2

; ð7Þ

m21 ¼ � u1
e2L1

; ð8Þ
where u1 and u2 are the lateral displacements (extensions) perpendicular to the loading directions x2 and x1,
respectively.
To determine the effective shear modulus, a biaxial loading test is simulated. A small tensile strain

e1 = 0.001 in the x1 direction and a small compressive strain e2 = �0.001 in the x2 direction are applied
simultaneously (see Fig. 4). Then, the effective shear modulus G12, defined by G12 = s12/c12, is determined
as
G12 ¼
F 1=L2 � F 2=L1
2hðe1 � e2Þ

; ð9Þ
where F1 and F2 are obtained from the finite element analysis.
In modeling uniaxial or biaxial loading tests, displacement boundary conditions are usually used (e.g.,

Silva et al., 1995; Silva and Gibson, 1997; Van der Burg et al., 1997; Simone and Gibson, 1998a,b; Fazekas
et al., 2002). For instance, displacement constraints may be imposed at the bottom nodes of the specimen in
the x2 direction and at the nodes on the left side of the specimen in the x1 direction, if strains are applied on
the top and/or right sides of the specimen, as shown in Fig. 4. However, since the specimen is cut out of an
infinite structure that can be regarded as periodic, spatially periodic boundary conditions should be applied
to ensure that the predicted properties of the specimen are representative of those of the honeycomb



v+

x2 (e2)

x1 (e1)

E32

E31

N2

N1
N3

v−

 h− h+

Fig. 5. Matched nodes for implementing spatially periodic boundary conditions.
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(Laroussi et al., 2002). Displacement boundary conditions that only restrain normal displacements may
underestimate foam properties (Chen et al., 1999). The specimen obtained by following the procedure de-
scribed in Section 2.1 (for the second method) is periodic, i.e., each node on one side (e.g., m�) has a
matched node on the opposite side of the specimen (e.g., m+), as shown in Fig. 5. For a uniaxially deformed
specimen subjected to prescribed strain ei, the periodic boundary conditions may be represented by
uk
þ

i � uk
�

i ¼ eiðxk
þ

i � xk
�

i Þ; i 2 f1; 2g; xkþ � xk� ¼ 0; ð10Þ

where xkþi and xk�i are, respectively, the positions of the matched nodes k+ and k� on the specimen bound-
ary lines with outward unit normal vectors ei and �ei, ukþi and uk�i are, respectively, the normal displace-
ment components of k+ and k�, and xk+ and xk� are, respectively, the rotations of k+ and k�. The
periodic boundary conditions described in Eq. (10) have also been used in Chen et al. (1999), Nygards
and Gudmundson (2002) and Laroussi et al. (2002).
The periodic boundary conditions given in Eq. (10) can be implemented by using the option EQUA-

TION in ABAQUS and by introducing three reference nodes N1, N2 and N3, which define two two-node
AXIAL connector elements E31 and E32 (see Fig. 5). Elements E31 and E32 intersect at reference node N3
and are located along the e1 and e2 directions, respectively. Node N1 is allowed to move axially only along
element E31, and node N2 only along element E32. The degrees of freedom of the matched nodes may be
coupled with those of the reference nodes by
uk
þ

i � uk
�

i � xk
þ

i � xk
�

i

X Kþ

i � XK�

i

ðUKþ

i � UK�

i Þ ¼ 0; xkþ � xk� � ðXKþ � XK�Þ ¼ 0; ð11Þ
where Xi, Ui (i 2 {1,2}) and X are, respectively, the positions, displacements and rotations of the reference
nodes, the superscript ‘‘K+’’ denotes reference nodes N1 and N2, and the superscript ‘‘K�’’ stands for ref-
erence node N3. For uniaxial compression along �e2, say, node N3 is fixed and a displacement correspond-
ing to e2 = �0.001 is applied at node N2. The reaction force induced in element E32, called ETF1 in
ABAQUS, can be substituted into Eq. (6) for F2, and the axial displacement of element E31, called EU1
in ABAQUS, can be inserted into Eq. (8) for u1. It has been found that the procedure described here, which
utilizes the two end nodes of a connector element as the reference nodes, is easier to implement than that
introduced earlier by Laroussi et al. (2002), where a pair of matched nodes located on two opposite bound-
ary surfaces of a 3-D regular open-cell foam specimen were employed in each loading direction.
To investigate the effects of using different types of boundary conditions, a group of regular honeycomb

specimens are modeled. The group consists of four specimens similar to the one shown in Fig. 3(a) but with
varying number of cells. All of the four specimens have the same relative density R = 0.01. The elastic prop-
erties predicted using the displacement boundary conditions (DBCs) and periodic boundary conditions
(PBCs), respectively, are listed in Table 1. According to Gibson and Ashby (1997), the effective Young�s



Table 1
Comparison of different boundary conditions

n1 · n2
a E1 (kPa) m12 E2 (kPa) m21 E1/E2 m12/m21

DBCs 6 · 8 19.1895 0.8197 23.4048 0.9997 0.8199 0.8199
9 · 12 20.6317 0.8813 23.4046 0.9997 0.8815 0.8816
18 · 20 22.0328 0.9411 23.4046 0.9997 0.9414 0.9414
21 · 24 22.2322 0.9496 23.4046 0.9997 0.9499 0.9499

PBCs 6 · 8 23.4041 0.9997 23.4041 0.9997 1 1
9 · 12 23.4041 0.9997 23.4041 0.9997 1 1
18 · 20 23.4042 0.9997 23.4042 0.9997 1 1
21 · 24 23.4033 0.9997 23.4033 0.9997 1 1

a n1 and n2 are, respectively, the number of cells in the x1- and x2-directions.
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moduli and Poisson�s ratios of a regular honeycomb in its two orthogonal directions are equivalent, and
their values are independent of the number of cells. As shown in Table 1, the properties obtained using
the PBCs are indeed independent of the number of cells used, thereby agreeing with what was noted in
Gibson and Ashby (1997). In contrast, the results predicted using the DBCs vary with the cell number
and indicate that the isotropy of the honeycomb is enhanced as the number of cells increases. This compar-
ison shows that the PBCs can better capture the mechanical behavior of honeycombs. Hence, they are
employed in our finite element simulations discussed below.
3. Results and discussions

3.1. Mesh sensitivity

Before proceeding to model honeycombs having irregular cell shapes and non-uniform cell wall thick-
ness, an important issue that needs to be resolved is to determine the appropriate number of cells (C) to
be included in a specimen and the appropriate number of specimens (S) to be analyzed for each type of
honeycombs. Based on a finite element analysis of random heterogeneous materials using representative
volume elements (RVEs) of various sizes, Kanit et al. (2003) found that for a given precision the effective
elastic properties of the materials can be obtained through using either a large RVE accompanied by a small
number of specimens or a small RVE accompanied by a large number of specimens. This indicates that the
number of specimens needs to be carefully chosen for accurate predictions. As mentioned earlier, in the cur-
rent study the number of specimens is initially taken to be 20 (i.e., S = 20) for each type of honeycombs to
be simulated, which is the same as that used in Silva et al. (1995). Nine families of specimens, each family
containing a same number of cells C (C 2 {48,108,144,192,240,300,360,432,504}), are then considered to
determine the appropriate C. For each family, 20 specimens are modeled to obtain the mean values (m) and
standard deviations (d) of the effective properties. The shape irregularity amplitude (a) and the relative den-
sity (R) remain to be 0.5 and 0.01, respectively, for all of the nine families of specimens. The pertinent
numerical results are listed in Table 2.
From Table 2, it is seen that as the number of cells (C) increases, the mean values of the two effective

Young�s moduli (E1,E2) and the effective shear modulus (G12) all decrease initially and then stay, respectively,
at around 26kPa and 6.6kPa with small variations, while those of the effective Poisson�s ratios (m12 and m21)
are insignificantly affected. The standard deviations (d) of all the five properties are generally decreasing with
the increase of C. When C = 360, d is small for all of the five properties. Further increase of C does not lower
the values of d. Therefore, C = 360 is chosen as the number of cells to be included in a specimen.



Table 2
Effects of the number of cells on elastic properties

C E1 (kPa) m12 E2 (kpa) m21 G12 (kpa)

m d m d (10�5) m d m d (10�5) m d

48 31.57 5.589 0.9996 7.446 31.57 5.583 0.9996 7.520 7.894 1.398
108 29.00 3.447 0.9996 4.219 29.00 3.446 0.9996 5.878 7.276 0.829
144 28.92 2.313 0.9996 3.843 28.92 2.313 0.9996 5.196 7.231 0.579
192 27.35 2.337 0.9996 3.304 27.35 2.337 0.9996 3.596 6.839 0.584
240 26.54 1.915 0.9996 2.796 26.54 1.915 0.9996 2.796 6.636 0.479
300 26.60 1.464 0.9996 2.230 26.60 1.464 0.9996 2.552 6.650 0.366
360 26.55 1.181 0.9996 1.759 26.55 1.181 0.9996 1.538 6.638 0.295
432 25.63 1.134 0.9996 1.789 25.63 1.134 0.9996 1.731 6.410 0.284
504 26.34 1.443 0.9996 2.124 26.35 1.438 0.9996 2.173 6.587 0.361
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Fig. 6. The shear modulus varying with the number of specimens.
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In order to evaluate whether the initially chosen number of specimens (S = 20) is an appropriate one,
finite element analyses are conducted on three types of honeycombs: the completely irregular honeycombs
with a uniform cell wall thickness (a = 1.0,b = 0), the regular honeycombs with completely non-uniform
cell wall thickness (a = 0,b = 1.0), and the completely irregular honeycombs with completely non-uniform
cell wall thickness (a = 1.0,b = 1.0). Each specimen contains 360 cells. The mean values (m) and standard
deviations (d) of the effective shear modulus G12 are obtained for the three types of honeycombs using var-
ious values of S (S 2 {10,20,30,40,50,60,70,80}), which are shown in Fig. 6. It is seen from Fig. 6 that the
mean values of G12 change little with the variation of S. In addition, there is only a small change in the
standard deviations of G12 as S increases from 10 to 20, and further increase of S does not lead to any sig-
nificant change in the values of d. Hence, the initial choice of S = 20 as the number of specimens is
appropriate.

3.2. Isotropy of the effective properties

A total of 29 cases as listed in Table 3 are analyzed here. Controlling parameters include the degree of
cell shape irregularity (amplitude a), the degree of cell wall thickness non-uniformity (amplitude b) and the



Table 3
Isotropy of elastic properties

R a b E1/E2 m12/m21 G12=GT
12

m d m d m d

0.01 0 0 1 0 1 0 1 0
0.01 0.2 0 0.99999933 5.33443E�06 0.99999950 2.23669E�06 1 8.47180E�06
0.01 0.5 0 0.99999923 1.08169E�05 1.00000150 9.88449E�06 0.99999894 7.11786E�06
0.01 0.8 0 0.99999197 3.91625E�05 1.00000150 2.52012E�05 0.99999741 2.11883E�05
0.01 1.0 0 0.99997741 8.57673E�05 0.99997347 7.94084E�05 1.00000031 2.81441E�05
0.01 0 0.2 1 0 0.99999950 2.23673E�06 1.00000169 6.49030E�06
0.01 0 0.5 1.00000082 7.03450E�06 1.00000200 6.96030E�06 0.99554113 0.01995825
0.01 0 0.8 0.99999865 1.46421E�05 0.99999550 1.05030E�05 1.00000471 1.25045E�05
0.01 0 1.0 1.00099455 0.00248268 1.00099626 0.00249484 1.00066102 0.00195853
0.01 1.0 0.2 0.99998208 9.28584E�05 0.99997697 9.14235E�05 0.99999827 3.14686E�05
0.01 1.0 0.5 1.00001497 1.05325E�04 1.00001303 1.05629E�04 1.00000428 2.78819E�05
0.01 1.0 0.8 0.99929762 0.00331706 0.99929493 0.00331722 1.00021947 0.00090569
0.01 1.0 1.0 1.00072631 0.00190331 1.00072454 0.00190065 1.02207486 0.09696343
0.06 0 0 1 0 1 0 1 0
0.11 0 0 1 0 1 0 1 0
0.16 0 0 1 0 1 0 1 0
0.22 0 0 1 0 0.99998865 0 1 0
0.06 1.0 0 0.99978203 6.24103E�04 0.99977820 6.30239E�04 0.99994557 0.00014991
0.11 1.0 0 0.99923511 0.00187065 0.99933323 0.00183054 0.99970015 0.00048927
0.16 1.0 0 0.99870575 0.00321035 0.99874528 0.00321949 0.99965772 0.00079261
0.22 1.0 0 0.99800125 0.00481364 0.99798321 0.00478462 0.99947678 0.00128829
0.06 0 1.0 1.00134033 0.00944197 1.00153983 0.00944104 1.00088287 0.00339788
0.11 0 1.0 1.00496522 0.01237428 1.00496534 0.01237851 1.00165918 0.00320799
0.16 0 1.0 0.99780330 0.01836028 0.99785392 0.01840395 0.99984946 0.00460569
0.22 0 1.0 1.00480270 0.02282950 1.00479213 0.02286372 1.00171102 0.00613748
0.06 1.0 1.0 1.00164240 0.01729311 1.00163683 0.01728644 1.00148782 0.00489667
0.11 1.0 1.0 0.99703282 0.02023367 0.99705114 0.02022494 0.99983544 0.00526793
0.16 1.0 1.0 1.00197181 0.02909143 1.00195956 0.02907130 1.00129983 0.00794406
0.22 1.0 1.0 0.99695179 0.03263665 0.99695285 0.03266670 0.99976374 0.00954108
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relative density (R). Except for the cases with a = 0 and b = 0 (totaling 5), the mean values and standard
deviations of the elastic properties for each case listed in Table 3 are obtained from the results of the finite
element analyses performed on 20 specimens. For the former (i.e., perfect honeycombs with different values
of R), only one specimen is needed in each case. The mean ratios of E1/E2 and m12/m21 and their standard
deviations are given in Table 3. To examine whether the shear relation G = E/[2(1 + m)] is satisfied, which is
required for material isotropy, the mean ratios of G12=G

T
12 and their standard deviations are also listed in

Table 3, where the values of GT
12 are obtained using G

T
12 ¼ E1=½2ð1þ m12Þ
. An inspection of Table 3 indicates

that the standard deviations increase with a, b and R, while the mean values of E1/E2, m12/m21 and G12=G
T
12

are very close to unity for all cases. Therefore, it can be concluded that the elastic response of the honey-
combs studied is isotropic regardless of changes in cell shape irregularity, cell wall thickness non-uniformity
and relative density.

3.3. Effects of cell shape irregularity

For regularly packed hexagonal cell honeycombs the general formulas provided in Silva et al. (1995) (see
their Eqs. (4a–4d)), based on the unit cell method and incorporating cell wall bending, stretching and shear-
ing deformation mechanisms, can be reduced to
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E� ¼ 1:5EsR3

1þ ð4:05þ 1:125msÞR2
; ð12Þ

m� ¼ 1þ ð1:05þ 1:125msÞR2

1þ ð4:05þ 1:125msÞR2
; ð13Þ

G� ¼ 0:375EsR3

1þ ð2:2875þ 1:3125msÞR2
; ð14Þ
where E*, m* and G* are, respectively, the effective Young�s modulus, Poisson�s ratio and shear modulus.
An examination of Eqs. (12)–(14) shows that the shear relation, G* = E*/[2(1 + m*)], is not exactly satisfied
by these three expressions. Nevertheless, the substitution of Eqs. (12) and (13) into the shear relation
G* = E*/[2(1 + m*)] yields
G� ¼ 0:375EsR3

1þ ð2:55þ 1:125msÞR2
; ð15Þ
which is very similar to the expression given in Eq. (14). In particular, this shear relation based expression,
Eq. (15), leads to numerical values that are extremely close to those predicted by using Eq. (14) for the rel-
ative density range (i.e., R = 0–0.22) considered in the current study. For instance, when R = 0.22 (the larg-
est value in the range), Eq. (15) gives a value of 0.05461GPa, which is close to 0.05508GPa, the value
obtained using Eq. (14). The differences become even smaller for smaller values of R. Hence, the closed-
form expressions given in Eqs. (12)–(14) are employed here to model isotropic behavior of perfect
honeycombs.
When R = 0.01, Eqs. (12)–(14) give E* = 23.4045kPa, m* = 0.9997 and G* = 5.85216kPa for a perfect

honeycomb, while the results predicted by the finite element analysis for the specimen shown in Fig. 3(a)
(i.e., the case with C = 360) are E1 = E2 = 23.4042kPa, m12 = m21 = 0.9997 and G12 = 5.85193kPa. It is clear
that the elastic properties predicted by the unit cell method of Silva et al. (1995) and the current finite ele-
ment model are almost the same for a perfect honeycomb.
The effects of irregular cell shapes on elastic properties are analyzed for honeycombs having a fixed rel-

ative density R = 0.01 and some uniform cell wall thickness (i.e., b = 0). For each value of a, 20 independ-
ent lists of random variables hi and ui (i 2 {1, . . .,M}) are used to generate 20 honeycomb samples, each of
which has a unique arrangement of cell walls. Finite element analyses are then conducted on the 20 samples,
and the mean values and standard deviations of the effective properties, i.e., the Young�s moduli, Poisson�s
ratios and shear modulus, are obtained.
Figs. 7–9 graphically show the predicted elastic properties at different values of a. An examination of

these three figures indicates that all the properties become more scattered as cell shapes become more irreg-
ular. When a = 1.0, the relative deviations (i.e., standard deviation/mean value) are 7.99003% for E1,
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0.0307072% for m12, 7.98939% for E2, 0.0232045% for m21 and 7.99106% for G12. From Figs. 7 and 8 it is
observed that, on average, the elastic moduli increase considerably with a. The mean values of E1, E2
and G12 are approximately 45% larger when a = 1.0 than their corresponding values when a = 0. The reg-
ular honeycomb (with a = 0) is the weakest in terms of the elastic moduli. Poisson�s ratios, however, are
insignificantly affected by the cell shape irregularity, as shown in Fig. 9. Fig. 10 indicates the reduction
of cell wall thickness with the increase of a, which undermines the moduli. The strong dependence of the
moduli on a is attributed to the changes in the microstructure as cells become less regular. In addition
to hexagons, other types of polyhedrons, such as pentagons, quadrangles and triangles, appear in the
microstructure, as shown in Figs. 3(b) and (c). The stiffness of each of these fewer-sided polyhedrons is
higher than that of a hexagon, and the stiffening effect associated with the appearance of fewer-sided poly-
hedrons substantially outweighs the loss in stiffness due to the small decrease in the wall thickness, thereby
leading to a significant increase of the elastic moduli.
The study of Silva et al. (1995) did not deal with honeycombs with varying degrees of cell shape irreg-

ularity. The models they used are similar to the ones generated here with a = 0.5 (see Fig. 3(b)). Also, based
on 20 samples, they predicted the elastic properties of isotropic, non-periodic honeycombs having a
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constant relative density (R = 0.15). The relative deviations they found are approximately 6%, 4% and 9%
for the Young�s moduli, Poisson�s ratios and shear modulus, respectively. For the random honeycombs,
their findings indicate that the mean Young�s moduli are 6% higher, the mean Poisson�s ratios 1% lower,
and the mean shear modulus 11% higher than their corresponding values for the perfect honeycomb. To
compare with their results, we analyze one perfect honeycomb specimen with a = 0, b = 0 and 20 irregular
specimens having a = 0.5, b = 0 and R = 0.15. Smaller relative deviations are obtained for the irregular
honeycomb specimens, which are, respectively, 3.5% for the Young�s moduli, 3.7% for the shear modulus,
and 0.35% for the Poisson�s ratios. The mean values of the Young�s moduli, Poisson�s ratios and shear mod-
ulus predicted in the current study are, respectively, 6.4% higher, 1.1% lower and 7.7% higher for the irreg-
ular specimens than their corresponding values for the perfect honeycomb. The differences between the
properties obtained by Silva et al. (1995) and those predicted in this study may have resulted from the
use of different types of boundary conditions, as mentioned in Section 2.2.

3.4. Effects of cell wall thickness non-uniformity

For two-dimensional foams, the influence of cell wall thickness variations on the elastic properties is still
unclear. The regular honeycombs with a = 0, the irregular honeycombs with a = 0.5 and the completely
irregular honeycombs with a = 1.0, all having non-uniform cell wall thickness, are therefore analyzed here.
Four values of the thickness non-uniformity amplitude, i.e., b = 0.2, 0.5, 0.8 and 1.0, are used for each of
the three values of a. When b = 1.0, cell wall thickness variations are completely random. For each pair of a
and b, 20 honeycomb samples are modeled using independent lists of random variables hi, ui

(i 2 {1, . . .,M}) and wj (j 2 {1, . . .,N}). The relative density R remains to be 0.01 for the samples analyzed
here, and more samples with different values of R will be discussed in Section 3.5.
The predicted effective elastic properties are shown in Figs. 11–13. Figs. 11 and 12 reveal that the

Young�s moduli and shear modulus significantly decrease in a monotonic fashion as b increases for all three
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values of a considered. For the regular honeycombs (a = 0), the Young�s moduli and shear modulus are
reduced by about 53% as b changes from 0 to 1.0, while the relative reduction is approximately 47% for
the fully irregular honeycombs (a = 1.0) and 45% for the irregular honeycombs with a = 0.5. The Poisson�s
ratios, however, are negligibly influenced in each case by the values of a, as shown in Fig. 13.
An inspection of Figs. 11 and 12 also indicates that for each value of b the elastic moduli are the highest

for the completely irregular honeycomb with a = 1.0, the second highest for the irregular honeycomb with
a = 0.5, and the lowest for the regular honeycomb with a = 0. This is because irregular cell shapes result in
polyhedrons with higher stiffness than hexagons, as noted earlier. Furthermore, it can be seen that the dif-
ferences between the mean values of the elastic moduli for each two of the three types of honeycombs with
a = 1.0, a = 0.5 and a = 0 are insignificantly affected by varying b. This implies that the effect of the inter-
action between the cell shape and cell wall thickness variations on the elastic properties of each honeycomb
is weak. When these two variations are very small (i.e., a � 1,b � 1), the weak interaction observed here
can be analytically shown to be true (Grenestedt, 2003) for any such imperfect honeycomb with a given
value of R by using a power series based technique initially proposed in Grenestedt and Tanaka (1999)
for 3-D closed-cell foams with irregular cell shapes.
A further examination of Figs. 11 and 12 shows that the elastic moduli are affected more by the cell wall

thickness non-uniformity than by the cell shape irregularity. This follows from the fact that the elastic prop-
erties for the cases with a = 1.0, b = 1.0 and a = 0.5, b = 0.5 are smaller than the corresponding ones for the
case with a = 0, b = 0 (i.e., honeycombs without imperfections), although the elastic moduli are found to
increase as a increases (for fixed b) and to decrease with the increase of b (for fixed values of a), as discussed
earlier. Moreover, for the special cases without the interaction (i.e., with a or b being zero but the other one
varying), it is found that the maximum gain of moduli is 45% as a varies from 0 to 1.0 with the cell wall
thickness being uniform (i.e., b = 0), as mentioned in Section 3.3, while the maximum loss of moduli is
53% as b changes from 0 to 1.0 for a regular honeycomb (with a = 0). These observations based on the sim-
ulation results for the honeycombs with R = 0.01 are supported by the numerical data obtained for imper-
fect honeycombs with different values of R, which will be discussed next.
3.5. Effects of the relative density

Figs. 14–16 show the results of the effective Young�s moduli, shear modulus and Poisson�s ratios as a
function of the relative density for four types of honeycombs: the regular honeycombs with a uniform cell
wall thickness (a = 0,b = 0), the completely irregular honeycombs with a uniform cell wall thickness
(a = 1.0,b = 0), the regular honeycombs with completely non-uniform cell wall thickness (a = 0,b = 1.0),
and the completely irregular honeycombs with completely non-uniform cell wall thickness (a = 1.0,
b = 1.0).
For the honeycombs with a uniform cell wall thickness (i.e., b = 0), the relative density (R) depends on

the cell wall thickness, as dictated by Eq. (2). The relative density of the irregular honeycombs (with b 5 0)
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depends not only on the cell wall thickness (and its variations) but also on cell shapes, as governed by Eqs.
(2)–(4). Five relative densities, i.e., R = 0.01, 0.06, 0.11, 0.16 and 0.22, are used for each type of the hon-
eycombs listed above. For the perfect honeycomb (i.e., a = 0,b = 0) only one model is needed for each den-
sity. For the remaining three types of honeycombs with shape and/or thickness imperfections, 20 models
are built for each density except for the case with R = 0.01, which has been dealt with in the simulations
discussed earlier. The statistical distributions of hi, ui (i 2 {1, . . .,M}) and wj (j 2 {1, . . .,N}) remain the
same for the models with R = 0.06, 0.11, 0.16 and 0.22 as those for the models with R = 0.01.
It appears that the effective Young�s moduli and shear modulus of each of the four types of honeycombs

vary as a power-law function of the relative density, as shown in Figs. 14 and 15. These variations can be
captured by the power-law regression equations listed in Table 4, where the regression formula for the unit
cell-based micromechanics model of Silva et al. (1995) (see Eqs. (12)–(14)) is also included for comparison.
An inspection of Table 4 shows that the two non-dimensional Young�s moduli of all the four types of hon-
eycombs have very similar forms of regression equations, which again confirms the isotropy of honeycombs
as measured by the Young�s moduli. Hence, it suffices to discuss the regression equations for E1/Es alone in
the remaining part of this section.
Clearly, the unit-cell based model of Silva et al. (1995), which incorporates bending as well as stretching

and shearing effects, is accompanied by a power-law exponent of 2.94909, which is less than 3.0, the value



Table 4
Power-law regression equations for the elastic moduli

E1/Es E2/Es G12/Es

a = 0.0, b = 0.0 1.21028R2.94683 1.21028R2.94683 0.32331R2.96321

a = 1.0, b = 0.0 1.29147R2.87270 1.29452R2.87327 0.35454R2.89555

a = 0.0, b = 1.0 0.52653R2.92731 0.52516R2.92697 0.14342R2.94822

a = 1.0, b = 1.0 0.62298R2.85256 0.62483R2.85342 0.17427R2.87643

Unit cell method (Silva et al., 1995) 1.22142R2.94909 1.22142R2.94909 0.32893R2.96747
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that was obtained by considering bending as the only deformation mechanism (Gibson and Ashby, 1997).
For the perfect honeycomb (with a = 0,b = 0) simulated here, the exponent of its regression equation,
2.94683, is very close to 3.0. This reduction of 1.8% (from 3.0) reflects the effects of stretching and shearing
deformations, which agrees with what is revealed by comparing the model of Silva et al. (1995) with that of
Gibson and Ashby (1997), as noted above. The power-law exponent reaches its maximum value (i.e.,
2.94683) for the perfect honeycomb and its minimum value (i.e., 2.85256) for the completely random hon-
eycombs (with a = 1.0,b = 1.0). This implies that the presence of shape and/or thickness imperfections fos-
ters the effects of stretching and shearing deformations. By comparing the power-law exponents for
honeycombs with a = 1.0,b = 0 and those with a = 0,b = 1.0, one can find that shape irregularity weakens
bending deformations more than thickness non-uniformity does. Since the minimum power-law exponent
for the completely random honeycombs, 2.85256, is only 4.9% less than 3.0, it can be concluded that bend-
ing still dominates deformations of honeycombs having shape and/or thickness imperfections. On the other
hand, the coefficient of each regression equation measures the Young�s modulus of the honeycombs relative
to Es for a given value of R. The fact that the coefficient for the perfect honeycomb (with a = 0 and b = 0),
i.e., 1.21028, is less than the one for the honeycombs with a = 1.0 and b = 0, i.e., 1.29147, and greater than
the one for the honeycombs with a = 0 and b = 1.0, i.e., 0.526533, indicates that the Young�s modulus (E1)
is enhanced by the shape irregularity but undermined by the thickness non-uniformity. A smaller coefficient
for the completely random honeycombs with a = 1.0 and b = 1.0, i.e., 0.62298, than that for the perfect
honeycomb (i.e., 1.21028) implies that the stiffness-strengthening effect caused by the shape irregularity
is less pronounced than the stiffness-weakening effect due to the thickness non-uniformity. These observa-
tions agree with those made earlier based on Figs. 7 and 11 about the Young�s modulus varying with a and/
or b for fixed R. It can be further shown that how the relative density affects the shear modulus is similar to
that for the Young�s moduli discussed here.
Fig. 16 illustrates the relations of the Poisson�s ratios varying with the relative density R. For all of the

four types of honeycombs, both m12 and m21 decrease moderately with the increase of R in a monotonic man-
ner. It is seen that the influence of a and b on m12 and m21 is insignificantly small at various values of R con-
sidered, which, again, is in agreement with the earlier observations based in Figs. 9 and 13 (for fixed R).
In order to further explore the effects of the relative density (R) on the behavior of foams having the two

co-existing imperfections, the differences between the elastic properties of the imperfect foams and those of
the perfect foams (with a = 0,b = 0) are calculated. The differences are given by
eQ ¼ Qr � Qp ð16Þ

where eQ is the difference, Q denotes the elastic modulus (E1, E2 or G12), and the superscripts r and p stand
for, respectively, the random and perfect honeycombs. The numerical results for eQ as a function of R are
illustrated in Figs. 17 and 18.
It is observed from Figs. 17 and 18 that when R increases the differences in the three elastic moduli in-

duced by the presence of irregular cell shapes increase, while those by the non-uniform cell wall thickness
decrease, both in a monotonic manner. A further examination of Figs. 17 and 18 reveals that when R is
small the increase in the moduli due to the cell shape irregularity (i.e., a 5 0) is slightly smaller than the
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decrease in the moduli due to the cell wall thickness non-uniformity (i.e., b 5 0). When R becomes large,
however, the effects of the cell wall thickness non-uniformity on the elastic moduli are more significant than
those by the cell shape irregularity. As a result, the elastic moduli of the honeycombs with the two co-exist-
ing imperfections are lower than those of the perfect honeycombs and the differences between them increase
with R, as illustrated in Figs. 17 and 18. These observations support and enhance those based in Figs. 11
and 12 for honeycombs with R = 0.01.
4. Summary

The effects of co-existing cell shape and cell wall thickness imperfections on the elastic properties of 2-D
cellular solids (honeycombs) are studied using the Voronoi tessellation technique and the finite element
method. Voronoi diagrams with different degrees of cell shape irregularity (amplitude a) are produced
by perturbing a regular packing of seeds. Perturbations are then introduced to the uniform thickness of
the cell walls to generate a uniform distribution of wall thickness with different degrees of non-uniformity
(amplitude b). Twenty finite element (FE) models are constructed, based on the Voronoi diagrams for 20
honeycomb samples having the same pair of a and b, to obtain the mean values and standard deviations of
the effective elastic properties. Each sample contains 360 complete cells.
Based on the simulation results and analyses presented, the following conclusions can be drawn:

(1) The elastic response of honeycombs with co-existing cell shape and cell wall thickness imperfections
appears to be isotropic regardless of changes in the cell shape irregularity (a), the cell wall thickness
non-uniformity (b) and the relative density (R). The differences between the elastic properties associated
with different FE models (with the same pair of a and b) increase as cells become more irregular and the
relative density larger.

(2) For irregular honeycombs with cell walls of uniform thickness, as the cell shapes become more irreg-
ular, on average, the elastic moduli increase considerably, while the Poisson�s ratios are insignificantly
affected.
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(3) For regular honeycombs, the increase in the cell wall thickness non-uniformity substantially reduces the
elastic moduli but has little influence on the effective Poisson�s ratios.

(4) When irregular cell shapes and non-uniform cell wall thickness co-exist in a honeycomb, the effect of
the interaction between the two types of imperfections on the elastic properties is found to be weak. The
stiffness gain resulting from the appearance of irregular cells is less than the stiffness loss due to the per-
turbation to the uniform cell wall thickness when the value of a (measuring the cell shape irregularity)
and the value of b (measuring the cell wall thickness non-uniformity) are the same. Consequently, the
elastic moduli of the honeycombs with the two co-existing imperfections are lower than those of the
perfect honeycombs, and the differences increase when the value of R becomes large.

(5) With variations in cell shapes and cell wall thickness, the elastic moduli of imperfect honeycombs vary
as a power-law function of the relative density. Bending is still the dominant deformation mechanism.
The contributions of stretching and shearing, even after being strengthened by cell shape and cell wall
thickness imperfections, only reduce the power-law exponent by a few percent. The Poisson�s ratios
decrease insignificantly as the relative density increases.
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